

Name:	 	
Teacher:		
Class:		

FORT STREET HIGH SCHOOL

2012 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC

Mathematics

Time allowed: 3 hours (plus 5 minutes reading time)

Outcomes Assessed	Questions
Chooses and applies appropriate mathematical techniques in order to solve	1-10
problems effectively	
Manipulates algebraic expressions to solve problems from topic areas such	11,13
as geometry, co-ordinate geometry, quadratics, trigonometry, probability	
and logarithms	
Demonstrates skills in the processes of differential and integral calculus and	12, 14
applies appropriate techniques to solve problems	
Synthesises mathematical solutions to harder problems and communicates	15, 16
them in appropriate form	

Total Marks 70

Section I 10 marks

Multiple Choice, attempt all questions, Allow about 15 minutes for this section

Section II 90 Marks Attempt Questions 11-16,

Allow about 2 hours 45 minutes for this section

General Instructions:

- Questions 11-16 are to be started in a new booklet
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used

Section I	Total 10	Marks
Q1-Q10		
Section II	Total 90	Marks
Q11	/15	
Q12	/15	
Q13	/15	
Q14	/15	
Q15	/15	
Q16	/15	
	Percent	

SECTION I Multiple Choice (10 marks)

CIRCLE CORRECT RESPONSE

- 1. What is the value of $\frac{(1.49)^2 1.98}{\sqrt{11.62 + 8.34 \times 2.72}}$ correct to three significant figures?
 - A. 0.040

B. 0.0409

C. 0.041

- D. 0.0410
- 2. Find the values that satisfy $x^2 x < 6$
 - A. x < -2, x > 3

B. x < -3, x > 2

C. -3 < x < 2

- D. -2 < x < 3
- 3. If $\log_a 5 = 1.03$ and $\log_a 2 = 0.64$ then the value of $\log_a 10$ is:
 - A. 2.06

B. 1.67

C. 0.6592

D. 3.2

- 4. $\sum_{n=5}^{14} 17 2n =$
 - A. -11

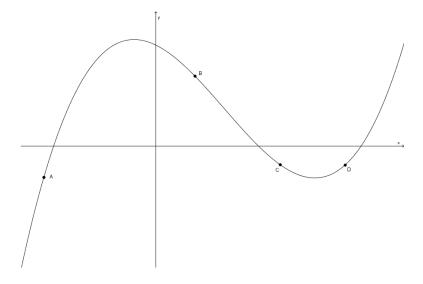
B. -20

C. -18

D. -28

- 5. Expressed in radian measure, 235° is:
 - A. $\frac{\pi}{235}$

B. $\frac{235}{\pi}$


C. $\frac{47\pi}{36}$

- D. $\frac{36\pi}{47}$
- 6. The third and seventh terms of a geometric series are 1.25 and 20 respectively. What is the first term?
 - A. ±2

B. $\frac{5}{16}$

C. ±4

- D. $\frac{5}{1024}$
- 7. State which point on the sketch fits the description $y < 0, \frac{dy}{dx} > 0, \frac{d^2y}{dx^2} < 0$

A. A

B. B

C. C

D.

D

8. What is the greatest value of the function $y = 4 - 2\cos x$?

A. 2

B. 4

C. 6

D. 8

9. A game is played in which two coloured dice are thrown once. The six faces of the red die are numbered 3, 5, 7, 8, 9 and 11. The six faces of the white die are numbered 1, 2, 4, 6, 10 and 12. The player wins if the number on the white die is larger than the number on the red die. What is the probability that the player wins once in two successive games?

A. $\frac{7}{18}$

B. $\frac{11}{18}$

C. $\frac{77}{162}$

D. $\frac{77}{324}$

10. What is the centre and radius of the circle with the equation $x^2 + y^2 + 6x - 8y - 11 = 0$?

A. Centre (-3, -4) and radius 36

B. Centre (-3,4) and radius 36

C. Centre (-3, -4) and radius 6

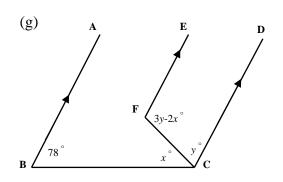
D. Centre (-3,4) and radius 6

SECTION II All necessary working must be shown

Question 11 (15 marks) Begin a NEW booklet

Marks

(a) Evaluate
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$


(b) If
$$\sqrt{50} - 3\sqrt{75} + \sqrt{18} = a\sqrt{2} - b\sqrt{3}$$
, find the value for a and b .

(c) State the domain and range of the function:
$$f(x) = 2\sqrt{x-1} + 3$$

(d) Evaluate
$$a$$
, in simplest exact form, if $\int_1^3 \frac{a}{1+x} dx = \log_e 16$.

(e) Solve for
$$x: |2x - 1| = 3x - 4$$

(f) For what values of k will
$$x^2 - (k-3)x + k = 0$$
 have equal roots?

AB \parallel EF \parallel DC. Find the value of x and y, giving reasons.

Question12 (15 marks) Begin a NEW booklet

Marks

(a) Differentiate with respect to x:

$$i) y = \sqrt{1 - x^2}$$

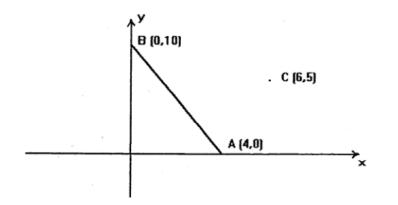
1

ii)
$$y = \frac{\cos x}{x}$$

1

(b) Find:

i)
$$\int \frac{1}{e^{3x}} dx$$


1

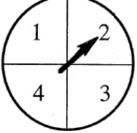
ii)
$$\int (1 + 3sec^2 \frac{x}{2}) dx$$

1

- (c) The gradient of a curve is given by $f'(x) = 6x^2 6x + 5$. If the curve passes through the point (2, 13), find its equation.
 - 2
- (d) Find the equation of the normal to the curve $y = \ln\left(\frac{2x-1}{x+1}\right)$, at the point where x = 2.

6

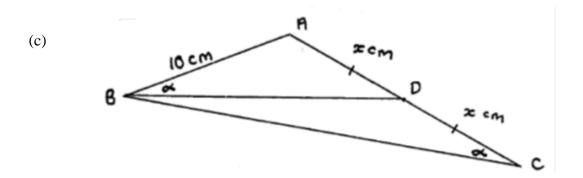
The points A, B and C have coordinates (4,0), (0,10) and (6,5) respectively as shown on the diagram. Copy the diagram into your booklets.


- (i) Find the gradient of the line AB.
- (ii) Show that the equation of the line through point C perpendicular to AB is given by

2x - 5y + 13 = 0. Label this line q.

- (iii) Find the perpendicular distance of B from the line CD, giving your answer in surd form with rational denominator.
- (iv) If the line q meets the x-axis at D, calculate the size of angle ADC, correct to the nearest degree.

- (a) A party of walkers leave their base camp A at noon and walk in the direction 150°T until 4 they reach a point B on the bank of the river. Unable to cross the river, they follow it on a bearing of 015°T and retire at 2 pm when they reach point C. The bearing and distance of C from A are 120°T and 2.5 km respectively.
 - i) In your booklet, draw a diagram and mark on it the given information, in the correct positions.
 - ii) Find the distances AB and BC.
 - iii) Hence, calculate the average speed, correct to one decimal place, of these walkers from A to C.


(b) 3

Dani and Chris used the spinner shown above to play a game. Dani spun the spinner twice and added the results of the two spins to get his score. Chris then took his turn. The player with the highest score won the game.

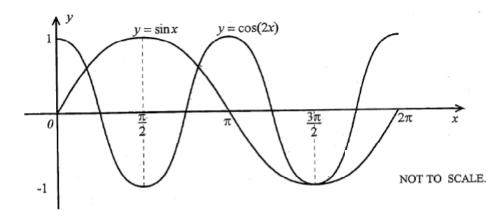
- i) Use a tree diagram or a sample space to show all the possible scores Dani could have achieved when he played the game.
- ii) What is the probability that Dani scored 6 in the game?
- iii) Dani's score was 6. What is the probability that Chris won the game?

Question 13 is continued over

In the diagram above, $AB = 10 \ cm$, $AD = DC = x \ cm$ and $\angle ABD = \angle BCD$.

4

- i) Prove $\triangle ABD \parallel \mid \triangle ACB$
- ii) Hence find the exact value of x.
- iv) If α and β are the roots of the quadratic equation $5x^2 3x 2 = 0$, find the value of: 4
- i) $\alpha + \beta$
- ii) $\alpha\beta$
- iii) $\alpha^2 + \beta^2$
- iv) $(3 \alpha)(3 \beta)$


Question14 (15 marks) Begin a NEW booklet

marks

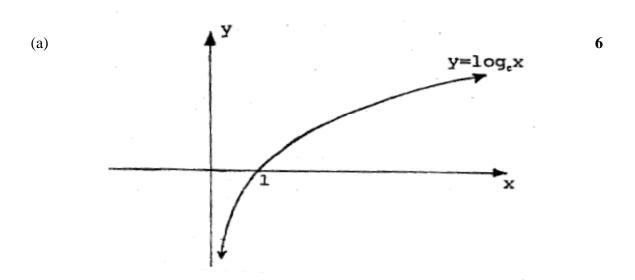
(a) Rapunzel has discovered something interesting about the way her hair grows. **6**When she was imprisoned in her tower (on the 1st of January) her hair was
9 metres long. She measured her hair every year on the 1st of January, and made a note of its length. She recorded the following lengths on her cell wall for the first 4 years of her imprisonment:

- i) How much did Rapunzel's hair grow in the second year?
- ii) Write a series showing the amount her hair had grown in each of the first 4 years.
- iii) Using the series in part (ii), find how much Rapunzel's hair grew in the eighteenth year.
- iv) Prince Charming arrived to rescue Rapunzel after she had been in the tower for 21 years. If the tower is 40 metres high, and assuming that her hair continues to grow according to the series in (ii), will Rapunzel's hair be long enough to reach the ground? Justify your answer by finding the length of Rapunzel's hair at this time.

(b)

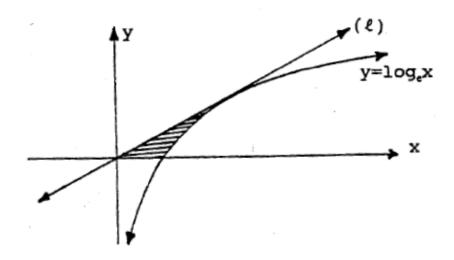
The diagram shows parts of the curves y = sinx and y = cos2x.

6


- i) Show that the curves intersect at $x = \frac{5\pi}{6}$ and $x = \frac{3\pi}{2}$.
- ii) Calculate the area between the curves from $x = \frac{5\pi}{6}$ to $x = \frac{3\pi}{2}$. Leave the answer in exact form.
- c) The region enclosed by the y axis, the line y = x 1 and the line y = 3 is rotated about the y axis.

i) Sketch the region

1


- ii) Show that the volume of the resulting solid of revolution is given by $V = \pi \int_{-1}^{3} (y^2 + 2y + 1) dy$
- iii) Hence, calculate this volume correct to two decimal places.

1

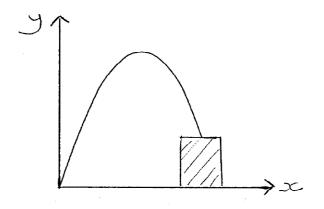
The diagram shows the graph of the curve $y = \log_e x$, not drawn to scale.

- (i) Find the equation of the tangent (*l*) at x = e to the curve and show that it passes through the origin.
- (ii) Show that the area bounded by the curve, the y-axis and the lines y = 0 and y = 1 is (e 1) square units.
- (iii) Using the results of part (ii) or otherwise, find the area of the shaded region between $y = \log_e x$, the tangent (*l*) and the *x*-axis as shown in the diagram below.

Question 15 is continued over

b) A river 60m wide is measured for depth every 10m across its width.

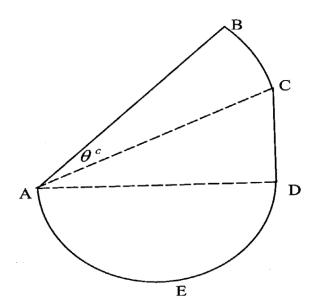
The measurements from bank to bank are given in the table. By using


Simpson's Rule, estimate the cross-sectional area of the river at this point.

Measurement number	1	2	3	4	5	6	7
Depth in metres	0	5.5	11.0	13.2	8.5	4.5	0

- (c) (i) Expand $e^{-x}(1-e^{-x})$ 1
 - (ii) For the curve $y = e^{-x} e^{-2x}$:
 - (α) find where it cuts the axes.
 - (β) find the co-ordinates of the stationary points and determine their nature.
 - (γ) determine the values of x for which the curve is monotonic decreasing and hence, or otherwise, discuss the behaviour of the curve for large values of x.
 - (δ) sketch the curve.

3


(a) A water spout reaches a maximum height of 40m at a point 20m away from its source on the ground. It lands on the roof of a building 25 m away. How high is the building? (A water spout traces out a parabola.)

- (b) Fabio and Su Lin worked out that they would save \$50000 in 5 years by

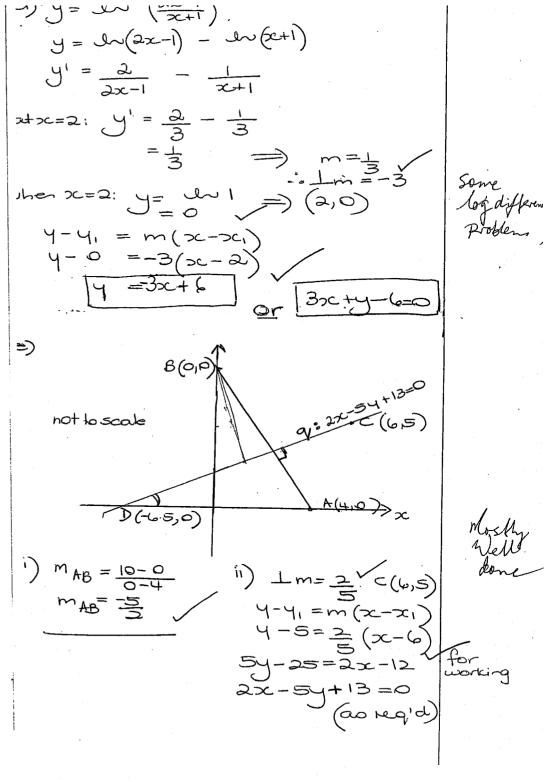
 depositing all their combined monthly salary of \$S\$ at the beginning of each
 month into a savings account and withdrawing \$1600 at the end of each
 month for living expenses. The savings account paid interest at the rate of
 3% p.a. compounding monthly.
 - (i) Show that at the end of the second month, the balance in their savings account, immediately after making their withdrawal of \$1600, would be given by $\{(1.0025^2 + 1.0025)S 1600(1.0025 + 1)\}$.
 - (ii) Hence write down an expression for the balance in their account at the end of the 60^{th} month.
 - (iii) Calculate their combined monthly salary.

(c) 7

ABC is a sector of centre A and radius AB.

ACD is a right-angled triangle with \angle ADC = 90° .

AED is a semi-circle of radius 2r. CD = 3r. The perimeter of ABCDE is 24m.


(i) Show that
$$\theta = \frac{24 - 2\pi r - 8r}{5r}$$

- (ii) Show that the total Area = $60r 14r^2 3\pi r^2$
- (iii) Show that the total area is a maximum when $r = \frac{30}{3\pi + 14}$
- (iv) Find the maximum area to the nearest m^2 .

END OF EXAMINATION

/ mm 11 = xx-4 stidents did DI. D QQ. D Q3. B Q4. B not check 2x-1 = 3x-4-2x+1=3x-4 $\beta = \infty$ their onswers. 5= 500 Q6.B Q7.A Q8. C 15. C Theck: LHS=5 Check: LAS=1 Q10.D 19. C RHS=5 (10 marks) RHS = -1 check both students factorised this incorrectly the only solvis x=3 . not a soin v 50lns 3-27 $x^3-27 = (x+3)(x-3)(x+3)$? (2-3) (x^2+3x+9) many simple mather ?) $x^2-(k-3)x+k=0$ for equal mate. for equal roots A=0 mostly well done ie 62-4ac=0 $[-(k-3)]^2-4\times1\times k=0$ = 9+9+9 $k^2 - 6k + 9 - 4k = 0$ = 27 $k^2 - 10k + 9 = 0$ well done) 50-3F5 +J18 = at - bt3 (k-9)(k-1)=05/2 - 15/3 + 3/2 = a/2 - W3 1/ 8/2-15/3 = a/2-6/3 - k= 1 or 9 9=8 and b= 15 9) 3y-2x ry = 180 (co-int L's, EF||DC) / Porsettique) $f(x) = 2\sqrt{x-1} + 3$ stidents used > 4y - 2x = 180chyrs Instead of 7 D: X>1 24 - oc = 90 (1) R: 473 78 +x+ y = 180 (co-int. L's, AB (CD) $\int_{1+\infty}^{3} \frac{\alpha}{1+\infty} dx = \log_{10} 16 \cdot \text{stodents took}$ x +y = 102 2 a out of the D+Q; a [loge 16 a (en 4-ena) = en 16 / integral instead 50b in @: x+64=102 a en(4) = enla x = 38. . students left the a = Inib mostly well done answer as In16 = 49/2 a= 4

3) 1) $y = \sqrt{1-x^2}$ $y = (1-x^2)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(1-x^2)^{-\frac{1}{2}} \times -\cancel{/}x$ $\frac{dy}{dx} = -x(1-x^2)^{1/2}$ $y = \frac{\cos x}{x}$ dx = vdy - w. dx $= \frac{2C_{\circ} - sinx - cosx.}{xc^{2}}$ $\frac{dy}{dx} = -x\sin x - \cos x$ $\frac{1}{2} \int \frac{1}{e^{3x}} dx = \int e^{-3x} dx$ II) $\int (1 + 3 \sec^2 \frac{\pi}{2}) dx$ x + 3 + 0 x + C = x + 6+0x x +c f(x) = 6x2 - 6x +5 $f(x) = \frac{6x^3}{3} - \frac{6x^2}{5} + 5x + C$. Wide range fac) = 2x3 -3x2 +5x+C / of constants $h_0(213)$ 13 = 16 - 12 + 10 + c $\frac{C = -1}{1.50} = 2x^3 - 3x^2 + 5x - \frac{1}{2}$

$$a=2 b=-5 c=13$$

$$p. dist. = \left| \frac{ax+by+c}{\sqrt{a^2+b^2}} \right|$$

$$= \left| \frac{0-50+13}{\sqrt{4+35}} \right|$$

$$= \left| \frac{-37}{\sqrt{29}} \right|$$

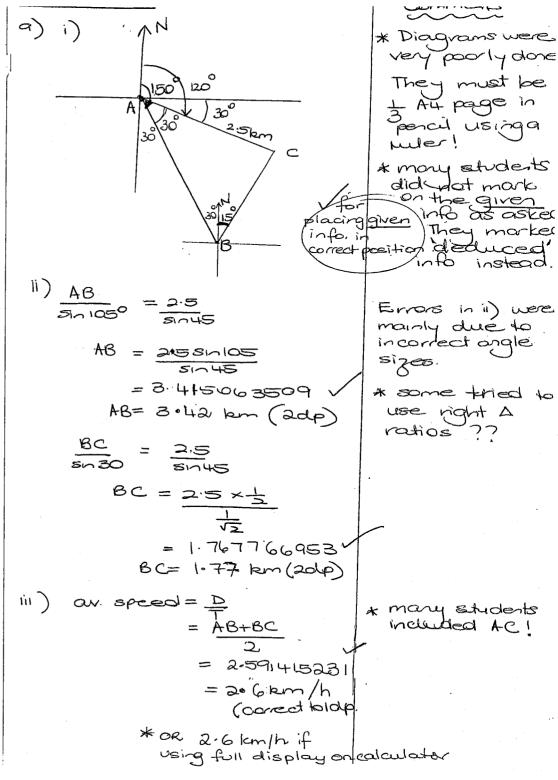
$$= \frac{37}{\sqrt{29}} \times \sqrt{29}$$

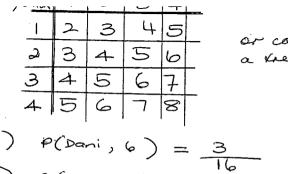
$$= \frac{37\sqrt{29}}{\sqrt{29}} \text{ onits.}$$

$$= \frac{37\sqrt{29}}{\sqrt{29}} \text{ onits.}$$

$$\sqrt{0} cD(9) \text{ outs } \propto ax \text{ axis } \Rightarrow y=0$$

$$2x=-3$$


$$x=-6.5 \Rightarrow D(-6.5,0) \text{ needed.}$$


$$naw m=\frac{2}{5} \text{ from ii)}$$

$$\therefore \tan \theta = m$$

$$\tan |ADc| = \frac{2}{5}$$

$$|ADc| = 22^{\circ} \text{ (nearest deg.)} \qquad \frac{11.8^{\circ}}{\sqrt{9}}$$

* WOUNT QUICE " many students or con use recorded the a kreediagram outcomes, not the scores as asked in the question.

generally well done!

& MOST STUDENTS

NEED TO REVISE

the correct tests!!!

(Many are confusing

coopurence took with smilarity tests)

SETTING OUT

SIMILARITY

proofs and

P (Chris wins) = P(score > 6)

= P(500re 7) + P(500re8)

) In A'S ABD + ACB

LA is common LABD = LACB (= x), given)

:. A ABD III AABC equianquar of

$$\frac{AD}{AB} = \frac{AB}{AC} \quad (corres. sides of sim. Als are in some ratio)$$

$$\frac{x}{10} = \frac{10}{2x}$$

$$2x^2 = 100$$

$$x^2 = 50$$

x=552 (x>0)

1)
$$x+\beta = \frac{1}{2}$$
 $x+\beta = \frac{1}{2}$
 $x+\beta = \frac{1}{2}$
 $x+\beta = \frac{1}{2}$
 $x+\beta = \frac{1}{2}$
 $x+\beta = \frac{1}{2}$

11.) XB = G

Treason should be stated for setting up the the proportion statement

*generally very some students must learn the main expressions KHB, KB >(KHB)~ (a) 9m 10m 11.05m, 12.15m, 13.3m

1) 1.05m

1) 1+1:05:41:10+1:15.

in) Th= 9+ (h-1)d AP: 9=1,d=05 $T_{18} = 1 + 17 \times 0.05$ = 1.85

igrew 1.85m in the 18th year

1v)
$$S_n = \frac{n}{a} \left[20 + (n-1)d \right]$$

 $S_{21} = \frac{21}{2!} \left[2 + 20 \times .05 \right]$
 $S_{31} = 31.5$

Leight of hair after 21 yrs = 40.5 m

Since The tower is 40m high, her hair will be long enough.

b)
$$y = 5 \text{ in } x$$

 $x = 5 \text{ if } y = 8 \text{ in } y = \cos 2x$
 $y = \frac{1}{2}$ = $\cos 2 (5 \text{ if } y = \cos 5)$

curves intersect at 1=511

ii) $A = (\cos 2x - \sin x) dx$

$$= \frac{1}{2} \sin 2x + \cos x = \frac{3\pi}{5\pi}$$

$$= \frac{1}{2} \sin 3\pi + \cos 3\pi - \frac{1}{2} + \cos 5\pi$$

$$= (0+0) - (-13 - 13) + \cos 5\pi$$

 $= (0+0) - (-3 - 3) + \cos 5$ = (3+6) + 3 = 3 = 3

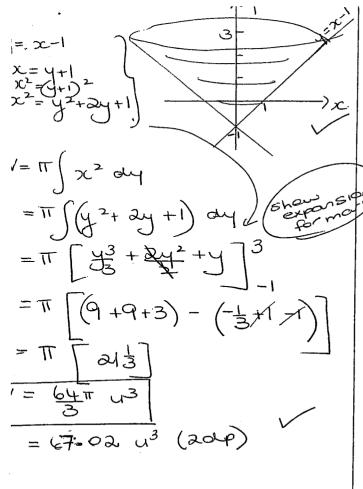
* Most students are not read. the requirements of the questro

ie (i) 2nd pot 1st! (ii) Write a series...

(iii) " ... in the 18th year .."

· many did not know the definition of a series.

· Several students found Tel constead of Szi


· many forgot to add the 31.5m growth to the initial 9m length, thus forever trapping Rapunzel unjustly in her tower

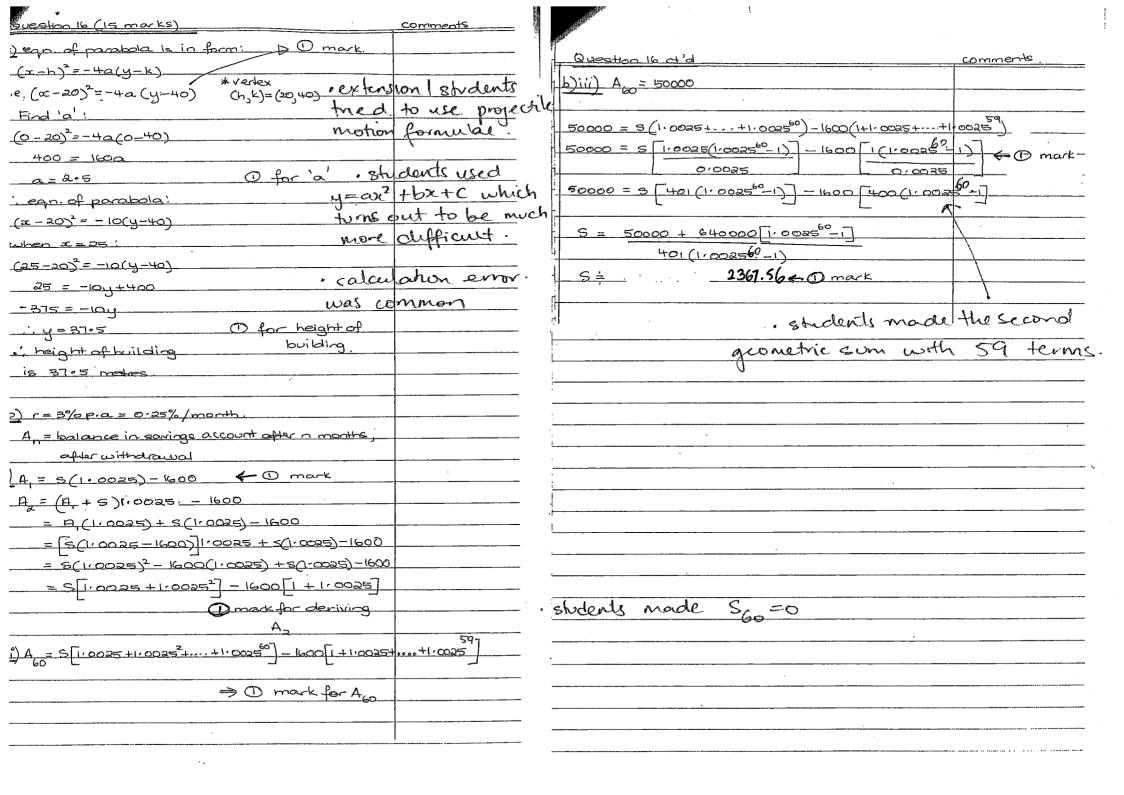
· while many made and solved the equation cor2x=sinx, too many used an equation to show. Solve or show, don't mux the methods! show.

despite being clearly asked to evaluate between 5th and 2 many tried to add together every possible area/integral (wasting

Many also seen unaware Hart # < #

· exact value - this doesn't mea leave in trig form when the and aire orest for valippall

- Sketch the region c. you must indicate the region somehows: shading to the standard way to do this. Simply drawing all the lines does not fuffel the requirements of the question!
- offs the integral is already given, you must make the Vink between (i) as the starting point and thus integral! Too many wrote V=TS x 2 dy =TT S y2+2y+1 dy (this scored no marks)
- · too many stopped at $V = \frac{63}{3}\pi$ (these that could at least get the $\frac{64}{3}$) and did not fulfil the requirements of the question.


 IT also had a habit of mysteriously disappearing—leaving 21/3 as a common

answer

Question 15 (15 marks)	comments.
(a) i) y=10x	
$y' = \frac{1}{2}$	
at x=e, y'= e, y=lne=1	
Egn. of tangent:	well answered
y-1= = (x-e) → D markfor eqn.	
ey-e=x-e of tangent	
2-ey=0.	
Cub (Ci S) into	many lengt to
enp (0,0) juto	read the g care
<u> </u>	fully and did no
0-e(0)=0 (1) mark for	lattempt this part.
O=O O mark for showing origin is on tangent.	
tangent passes through the origin.	
	-
ii) A = si e dy & y=lnx O mark for integral	A common mistake
ey] [ey] [mack for	was to try and
es 3 0 mark for	I'mx dx
= e'-e°) mark for working.	U
= (e-1) units2.	
iii) A = (e-1) - A of A	More CARE
$= (e-1) - e \times 1 \qquad \leftarrow 0 \text{mark}$	needed.
= e-1-e	
$= \left(\frac{e}{2} - 1\right)^2 \text{ units}^2 \iff 0 \text{ mark}.$	
b) h=10 0 10 30 30 40 50 (0	Many students
b) h=10 0 10 20 30 40 50 60 0 5.5 11 13.2 8.5 4.5 0	did not recognise
7. 72 43 44 45 46 37	h=10 from q.
A=====================================	· · · · · · · · · · · · · · · · · · ·
= 10 \{0 + 0 + 4 \(5 \cdot 5 + 13 \cdot 2 + 4 \cdot 5 \) + 2 \(11 + 8 \cdot 5 \) \}	Omark
= 439.3 units2 + 1 mark	

		•
15 continued.		comments
$e^{-3t}(1-e^{-x})$		
) for expanding	•
$= e^{-x} - e^{-2x}$ (1)	orrectly	
	orrecting	
~ -2 ~		
$y = e^{-x} - e^{-2x}$		
x) sub x =0: sub y = 0		
		0.6606
$y = e^{\circ} - e^{\circ}$ $0 = e^{-\circ}(1 - e^{-\circ})$		some errors
$e^{-x} = 1 - 1$ $e^{-x} = 0$		in not recognising
= 1-1		
y=0 when x=0		$e^{-x} \neq 0$ and
5		when e=1 x=0
i cuts x & y axes at	0	Wite to the total of the total
origin.	for origin.	
		, –
3) dy = -e-x + 2e-2x		
		
dx		
at stationary pts., dy =0		
as as		<u> </u>
$-e^{-x}+2e^{-2x}=0$		
e-x(2ex - 1)=0		
		many students
$e^{-x} \neq 0$, $e^{-x} = \frac{1}{2}$		9
$\ln\left(\frac{1}{2}\right) = -\infty$		had trouble
- · · · · · · · · · · · · · · · · · · ·		
$x = -\ln(\frac{1}{2})$		solving
x=(n1-1n2)		2e-x-1=0
Z = (Int - In2)		111
t=1n2.		
-in2 -21n2		x=1~2
If x=1, y=e-in2 e-21,n2		
= = -+		
<u> </u>	O for stat.	
· staling of (In 2 It)		
(÷0.69, t)	- 14	
(+0,61,4),		
$d^{2}y = e^{-x} - 4e^{-2x}$		
dy - e - 4e		
dx^2		
1 12 - 12		
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		
da2		
9 ° (1 1 2)	O for	
(In 2 4) is a maximum turning pt		
	of stat.pt.	
	of stu. pri	

- Question is continued.	comments
(S)ii) x) Since there is only one	
turning point and it is a	
maximum turning point, then	<u> </u>
curve is monotonically decreasing	
for x>1n2. Ofor x>1n2	· · · · · · · · · · · · · · · · · · ·
<u> </u>	poorly answere
$\frac{dy}{dx} = -e^{-x} + 2e^{-2x} < 0$	
	many students
ie. e-x(2e-x-1)<0	found their
when se-x-1<0 as e-x>0	answer to be
$e^{-x} < \frac{1}{2}$ for all real x	X<12
i.e. Ine-x / In 2	instead of x>ln:
$-\infty < \ln \frac{1}{2}$ $\propto > -\ln \frac{1}{2}$	
i.e. x>in2.	
$as = x \rightarrow +\infty$ $y = e^{-x}(1 - e^{-x}) \rightarrow 0$ Ofor $y \rightarrow 0$	well answered
(because e-z-o)	
<u>s)</u> 14	
· ·	
	poorly answered
① for sketch	and otten
- 1	contradicted
(In 2, 14)	previous working.
0 1 2 3	
	-

Question 16 ct d	comments	216 continued		Comments
s)i) to cight NADC:		iv) A=60(1,28)-14(1,28)-	r= 3 0	
AC=5r (Pythagoras' Thm)		3×π×(1/28)2		
AB = 50	'students dud no	• •		
	Show working) - OBM (NEXEST MI)		
AB + BC + CD + OEA = 24 (given)			erk for answer.	
(, 5r + (5r)0 + 3r + 1×1×4r = 2+ ← 1 mark	· many wrote	a sho loud	0 1 1 100 0	
8r + 5rθ + 2πr= 24	or Hen just wrote	H. a	· Calculator e	occurred
(LIGEN THE POLICE	ing answer.	regularly	·
⊕ = <u>24-2πr-8r</u>	1	<u> </u>	<u> </u>	
5C				
	cle As above.			
) A = A of sector ARC + A of AADC + A of semicion	5-d2			
$= \frac{1}{2} (5c)^2 \Theta + \frac{4c \times 3c}{2} + \frac{1}{2} \times \pi \times (2c)^2 \leftarrow$	O			
56			·	
$= \frac{25r^2}{2} \left(\frac{24 - 2\pi r - 8r}{5r} \right) + 6r^2 + 2\pi r^2$				
= 50 (24-2711-81) +612+27112 (1) ma	rk	·		
work		·		
$= 60r - 5\pi r^2 - 20r^2 + 6r^2 + 2\pi r^2$				
$A = 60r - 14r^2 - 3\pi r^2$				
A is maximum when A = 0 and A 1 20				
	sty well done			
Al=o when				
60-28r-6Tr=0				
60= 6πr+28r			-	
$60 = r(6\pi + 28)$ $r = 60 = 2$ (1) mark for				
r = 60				
	1 1 1			
r = 30 311 +14	. students .			
	test their	mswers.		
$A'' = -28 - 6\pi < 0$				
e A is a visit of the same of the ma	rk for			
3rt +14, ma	ng for ximum			